Abundance of Arthropods of Medical Importance in Nipa Invaded Wetlands of Eastern Obolo, Nigeria

Ubolum, Peace M. E.; Umoh, G. S.; Ekong, Esther J.

1Pharmaceutical Microbiology and Parasitology Unit, Department of Pharmaceutics and Pharmaceutical Technology, University of Uyo, Uyo, Nigeria.
2Centre for Wetlands and Waste Management Studies, University of Uyo, Uyo, Nigeria.
3Department of Agricultural Economics and Extension, University of Uyo, Uyo, Nigeria.

Corresponding Author: upema84@yahoo.com; +2348169046483

Abstract: Arthropods abound in every conceivable environment. From December 2016 to May 2017, a survey was conducted to determine the abundance of arthropods of medical importance in nipa invaded wetlands of Eastern Obolo, Nigeria. Both aquatic and terrestrial habitats of the study area were surveyed. A scoop net was used for the collection of aquatic specimens, while a sweep net and various traps (pit fall, light and sticky traps) were used for terrestrial investigations. A total of 1094 arthropod from the classes crustacea, Arachnida and Insecta were collected. Out of the 1094 arthropods collected only 308 were of medical importance. These were *Callinectes Amnicola* (blue crabs) of the class crustacea, ixodid ticks (12.01%) of the class Arachnida and some insect vectors. Insect vectors collected included *Periplaneta americana* (4.22%) of the order Blattodea and dipterans of the families Phlebotomidae (40.26%), Ceratopogonidae (22.10%), Muscidae (16.23%) and Culicidae (4.87%). Results obtained from t-test revealed that the seasonal variation in abundance of the medically important arthropods was significant as t-tabulated (2.13) was less than t-tabulated (3.99). Shannon Wiener’s diversity index (H) revealed that the terrestrial habitat was more diverse (3.22) than the aquatic habitat (1.32). White flies of the species *Trialeurodes vaporariorum* were also collected. These are alien species which have been introduced into the environment because of invasion by nipa palm. However, they are not of medical importance. Since some medically important arthropods have been identified in the study area, it is pertinent to draw up a program targeted at the control of these vectors and hence the prevention of vector-borne disease outbreak. This will enhance the quality of health and livelihood of the community dwellers.

Keywords: Medical Importance, Nipa, Wetlands

INTRODUCTION

The phylum arthropoda is an assemblage of invertebrate fauna, characterized mainly by the possession of jointed appendages. According to Zhang (2013), over 1.5 million species of arthropods have been described. Arthropod-borne infectious diseases are still a scourge and cause a significant fraction of the global infectious disease burden. It is estimated that more than one million deaths occur yearly, from vector-borne diseases such as malaria, dengue, leishmaniasis, yellow fever, encephalitis, lympatic filariasis, onchocerciasis, etc. These disease burdens contribute immensely to the misery and hardship suffered by affected persons in endemic areas (WHO, 2014). In the tropics and sub-topics where these diseases are prevalent there is profound restriction of socio-economic status and development.

It is difficult to implement control measures of arthropod vectors without some knowledge of their diversity and abundance. The early detection of vectors of public health importance in an area is essential to the prevention of disease – outbreaks; which in turn will enhance the quality of health and livelihood of people in such an area. Besides, the health of a people is really the foundation upon which their happiness and wealth depend.

Nypa fruticans, otherwise known as nipa palm is a monospecies, which is adapted to mangrove coastal areas. It grows in soft mud, usually where the water is calm and requires regular inflow of fresh water and nutritious silt (Theerawitaya, et al., 2014). Nipa can be found inland, as far as the tide can deposit the palm’s floating seeds. It can also tolerate infrequent inundation, so long as the soil does not dry out for too long (Hossain and Islam, 2015).

When a single species of an invasive plant such as *N. fruticans* dominates and the flora of the area becomes more homogenous, vegetation structure and microclimate conditions are simplified, such that a diversity of arthropods can find appropriate habitat conditions (Haddad et al., 2009). Udoidiong and Ekwu (2011), documented a report that *N. fruticans* provides numerous microhabitats for some species of arthropods to hide and so escape predators. Nipa palm has also been reported by Quirog and Tabugo (2015), to serve as a breeding site and nursery for *Aedes* mosquitoes, whose females are vectors of yellow fever, dengue and encephalitis. Thus, the invasion of *Nypa fruticans* may enhance arthropod species diversity and some of these arthropod species may be of public health importance, owing to their potentials as vectors/transmitters of disease-causing organisms. The objective of this study was to
ascertain/determine the abundance of arthropods of medical importance in Okorombokho, a nipa invaded wetland of Eastern Obolo, Nigeria.

METHODOLOGY
The Study Area
The study area, Okorombokho is a coastal community in Eastern Obolo Local Government Area of Akwa Ibom State, Nigeria (Fig. 1). It is located between latitudes 04°32.19’ and 04°32.16’ North and longitudes 7°44.10’ and 7°45.05’ East. Its shoreline stretches between the estuaries of the Imo and Qua Iboe rivers, covering a distance of about 84km (UNIUYO CONSULT, 1998). Okorombokho community has a population that is less than 56,000 and the community dwellers have diverse socio-economic activities such as artisanal fishing, logging and boat transportation.

Naturally, Okorombokho is a mangrove swamp ecosystem, but this natural ecosystem has experienced serious perturbation due to nipa palm invasion. As part of the tropics, this area experiences two seasons, the dry and the wet seasons. This community is serviced by a general hospital at Okoroete (headquarters of Eastern Obolo Local Government Area).

Collection of Arthropod Species
Collection of arthropods commenced in December, 2016 and was concluded in May, 2017. December, January and February were relatively dry months while March, April and May were rainy months. Arthropods were collected from both the aquatic and terrestrial habitats of the study area. In each of these habitats, two designated points were surveyed. Aquatic arthropods were collected from two locations in the habitat (estuaries). For the terrestrial investigations, the location sampled were vegetation close to mangrove and vegetation close to nipa dominated area.

Aquatic surveys were carried out using hydrobiological scoop nets. For terrestrial surveys a sweep net (45 x 75cm), light, pit fall and sticky traps were used. Sticky traps which were used mainly for the collection of nocturnal species, were made of parchment paper (34 x 22cm). Each sticky trap was coated on both surfaces with engine oil. Trapped arthropods were removed from sticky traps using a small brush that was first of all moistened. The arthropods were washed in 1% saline solution and rinsed in water as described by Adamu, Williams and Balarabe (2012). Wandering crustaceans were collected by the handpicking method described by...
Trivedi, Gadhavi and Vachhrajani, 2012. Arachnids were collected using the pitfall trap and manual handpicking using protective gloves as described by Perveen and Jamal, (2012).

Preservation and Identification of Arthropod Species
Arthropods collected from the study area were placed in specimen bottles containing 70% ethanol. Each specimen bottle had a label with the following information: date, place and time of collection. Specimens were thereafter taken to the insectary of the Department of Animal and Environmental Biology, University of Uyo, Nigeria, for identification.

Taxonomic and pictorial keys that were used for identification were those of Choate (2003), Walker, Bouattour, Camicas, Estrada-Pena, Horak, Latif, Pegram, Preston (2003) and Fornshell (2012).

Arthropods which are known to transmit pathogens and/or parasites and cause biting nuisance were categorized as medically important arthropods according to Service, (2008).

Analysis of Data
Data obtained from this study were analyzed using t-test and Shannon-Wiener’s diversity index (H). The t-test was used to determine arthropod seasonal variation as well as compare the abundance of medically important arthropods collected both in the dry as well as rainy months. Shannon-Wiener’s diversity index (H) was used to compare the diversity of arthropods in the aquatic and terrestrial habitats of the study area.

RESULTS
Within the period of study a total of 1094 arthropods were collected and they were members of the classes crustacea, arachnida and insecta (Table 1). The class insecta had the highest number of arthropods followed by the class crustacea. Arachnids were the least in number. Insects collected were members of the orders diptera (33.64%), orthoptera (13.07%), lepidoptera (6.12%), blattodea (1.19%), odonata (1.10%) and demaptera (1.01%). Other groups of insects collected were hymenoptera (7.13%), hemiptera (6.58%) and 6.40% of coleoptera (Table 1).

In the terrestrial habitat sampled, some alien arthropod species (insects) were collected. These alien species were Trialeurodes vaporarium, commonly referred to as “white flies”, of the family aleyrodidae and order hemiptera. These species were found in the nipa invaded environment of the study area. Through personal communication the natives of Okorombokho confirmed that they were indeed new species which came with the invasion of nipa palm.

Arachnids were the fewest arthropods collected and they were members of the orders Araneida (5.39%) and Acarina (3.38%).

All crustaceans collected were members of the order decapoda (15.00%). They were the only class of arthropods collected from aquatic surveys. Aquatic insects such as mayflies (ephemeroptera), stoneflies (plecoptera) and caddisflies (trichoptera) were not found in the aquatic habitat of the study area.

Out of the 1094 arthropods collected 308 (28.15%) were of medical importance (Table 2). Crustaceans of medical importance encountered in the study area were edible/blue crabs (0.32%) of the species Callinectes annicola (order: decapoda). In the class arachnida, medically important specimens collected were members of the family ixodidae (12.01%).

Medically important insects collected from the study area were in the order blattodea (4.22%) and the order diptera. In the order diptera, the families of medical importance were phlebotomidae (40.26%), ceratopogonidae (22.10%), muscidae (16.23%) and culicidae (4.87%).

Data generated form this study were subjected to statistical analysis. Inter-season variation in arthropod density was not significant as revealed by t-test; because the t-tabulated (2.13) was greater than t-calculated (1.98). However, for the medically important arthropods the result obtained revealed that there was significant difference in density in the two seasons, as t-tabulated (2.13) was less than t-calculated (3.99), at 95% (0.05) level of significance.

Results obtained from Shannon-Weiner’s diversity index (H) indicated that the terrestrial habitat was more diverse (3.22) than the aquatic habitat (1.32).
The diseases of blue crabs vary, and on their medical importance. Jeffrey and Overstreet (2003), otherwise referred to as blue crabs are edible crabs, otherwise referred to as blue crabs are aquatic habitat the species arthropods in the class araneida were collected. In this class, members of the family ixodidae (acarina) which were also collected are of medical importance. Their medical importance has been discussed extensively by Jefferson and Overstreet (2003), documented a report on their medical importance. Their study revealed the heavy parasite (protozoan) load in the skeletal muscles of the blue crab. They added that the diseases of blue crabs vary from one location to the other and may be dependent on the prevailing environmental conditions. Also, Ekanem, Eyo, Ekpo and Bassey (2013) carried out a research on the parasites of Callinectes amnicola in the Cross River estuary, Nigeria. They reported that this species harboured certain protozoan parasites (Trichodina) and nematodes. C. amnicola is a delicacy and a rich source of protein in Okorombokho. It is consumed by the young as well as the elderly. Some even consume it raw or partially cooked. Since this species has the potential of transmitting disease, it could constitute a health risk to the community dwellers, if consumers are not enlightened on the need to properly cook them before consumption.

Species of arthropods in the class arachnida (orders acarina and araneida) were collected. In this class, members of the family ixodidae (acarina) which were also collected are of medical importance. Their medical importance has been discussed extensively by Service (2008); Arong, Shitta, James-Rugu and Effanga (2011); Umar, George and Ajanusi (2011) and Isaac, Igbinosa and Nmorsi, (2016).

Medically important insects encountered in the study area were of the orders blattodea and diptera. In the Table 1: Composition and Abundance of Arthropod Taxonomic Groups

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td>29</td>
<td>34</td>
<td>13</td>
<td>18</td>
<td>37</td>
<td>33</td>
<td>164</td>
<td>15.00</td>
</tr>
<tr>
<td>ARACHNIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarina</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>37</td>
<td>3.38</td>
</tr>
<tr>
<td>Araneida</td>
<td>12</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>59</td>
<td>5.39</td>
</tr>
<tr>
<td>INSECTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattodea</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>13</td>
<td>1.19</td>
</tr>
<tr>
<td>Odonata</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>1.10</td>
</tr>
<tr>
<td>Dermaptera</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td>11</td>
<td>1.01</td>
</tr>
<tr>
<td>Orthopera</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>29</td>
<td>19</td>
<td>32</td>
<td>143</td>
<td>13.07</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>16</td>
<td>17</td>
<td>78</td>
<td>7.13</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>16</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>67</td>
<td>6.12</td>
</tr>
<tr>
<td>Diptera</td>
<td>48</td>
<td>36</td>
<td>45</td>
<td>71</td>
<td>89</td>
<td>79</td>
<td>368</td>
<td>33.64</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>18</td>
<td>18</td>
<td>1</td>
<td>14</td>
<td>-</td>
<td>21</td>
<td>72</td>
<td>6.58</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>13</td>
<td>10</td>
<td>17</td>
<td>-</td>
<td>17</td>
<td>13</td>
<td>70</td>
<td>6.40</td>
</tr>
<tr>
<td>Total</td>
<td>187</td>
<td>150</td>
<td>144</td>
<td>171</td>
<td>211</td>
<td>231</td>
<td>1094</td>
<td>100.00</td>
</tr>
</tbody>
</table>

\(P \leq 0.05 (n_1 + n_2 - 2) \) degree of freedom = 4, t-val 2.13 > t-cal 1.98

Table 2: Numerical Abundance of Medically Important Arthropods

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARACHNIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acarina: Ixodida</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>37</td>
<td>12.01</td>
</tr>
<tr>
<td>INSECTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blattodea: Blattida</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>13</td>
<td>4.22</td>
</tr>
<tr>
<td>Diptera: Phlebotomidae</td>
<td>10</td>
<td>15</td>
<td>23</td>
<td>18</td>
<td>31</td>
<td>27</td>
<td>124</td>
<td>40.26</td>
</tr>
<tr>
<td>Diptera: Ceratopogonidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>23</td>
<td>29</td>
<td>68</td>
<td>22.10</td>
</tr>
<tr>
<td>Diptera: Muscidae</td>
<td>17</td>
<td>4</td>
<td>-</td>
<td>11</td>
<td>17</td>
<td>1</td>
<td>50</td>
<td>16.23</td>
</tr>
<tr>
<td>Diptera: Culicidae</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>15</td>
<td>4.87</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>24</td>
<td>35</td>
<td>60</td>
<td>87</td>
<td>64</td>
<td>308</td>
<td>100.00</td>
</tr>
</tbody>
</table>

\(P \leq 0.05 (n_1 + n_2 - 2) \) degree of freedom = 4, t-val 2.13 > t-cal 3.99
order blattodea only the species Periplaneta americana were collected. These species are known to transmit pathogens mechanically because of their filthy habits. Ajero, Ukagu and Ebirim (2011), reported that the parasites transmitted by P. americana were Ascaris lumbricoides (causative agent of ascariasis), Trichuris trichiura (agent of trichuriasis), hookworms, Entamoeba coli and Entamoeba histolytica (responsible for amoebiasis) and Balantidium coli etc. Data obtained from their study thus revealed the potentials of cockroaches as mechanical transmitters of cysts and ova of parasites.

Of the dipterans obtained from the survey only members of the families phlebotomidae, ceratopogonidae, muscidae and culicidae are of medical importance, because of their potentials as vectors of disease-causing organisms. Phlebotomine sandflies of the family phlebotomidae, genus Phlebotomus, collected in good number from the terrestrial habitats of the study area are known vectors of the parasite Leishmania spp, which are the causative agents of leishmaniasis. Adamu, Williams and Balarabe (2012), reported their occurrence in some parts of Southern Bauchi State, Nigeria and their role in the transmission of cutaneous leishmaniasis in the area. Temocin, Sari, and Tulek (2016), reported the presence of phlebotomine sandflies in Turkey and associated their presence with the outbreak of leishmaniasis and symptoms ranging from fever, skin lesions, headache, gastro-intestinal disturbances including diarrhoea.

Biting midges (Ceratopogonidae), of the genus Culicoides which were collected from the study area are known vectors of filarial parasites (Service, 2008). In addition to the transmission of filarial parasites, biting midges constitute a serious biting nuisance. They are very small, but what they lack in size they can make up for in numbers.

Muscina stabulans and Musca domestica (Muscidae) also found in the study area are capable of either mechanical or biological transmission of human pathogens and parasites. Ekeh, Idris, Otulor, Ihe, Ubanwa, Luka and Paul (2016), investigated the relative abundance of synanthropic flies with associated parasites and pathogens in Minna metropolis, Niger State, Nigeria. Their results showed that synanthropic flies in the family muscidae pose a serious health risk to the inhabitants of their study area and commented on the need for their control.

Culex quinquefasciatus and Aedes aegypti (culicidae) which were collected from the terrestrial habitats are known vectors of lymphatic filariasis and yellow fever respectively (Service, 2008). Worthy of note is the fact that no species of Anopheles (responsible for the transmission of the malaria parasite) was collected throughout the period of study.

The t-test result which revealed that there was significant difference in the density of the medically important arthropods in the two seasons, corroborates the report of Arong et al., (2011), who commented on the seasonal variation in the abundance and distribution of some medically important arthropods in Plateau State, Nigeria.

The aforementioned medically important arthropod species are not new in the area, but the alien species Trialeurodes vaporariorum (white flies) of the order hemiptera, family aleyrodidae, though not of medical importance are associated with Nypa invasion in the environment. They were collected from Nipa palm and feed on sucrose from the palm.

The absence of arthropods such as mayflies (ephemeroptera), stoneflies (plecoptera) and some caddisflies (trichoptera), which are commonly found in other aquatic habitats implies that the water quality of the aquatic habitat is poor. These group of arthropods are known to be sensitive/intolerant to pollution (Mitchell and Stapp, 1996; Voshell and Reese, 2002).

CONCLUSION
Like every other part of the biosphere, Okorombokho provides habitats for diverse organisms, arthropods inclusive. The early detection of organisms with potentials for the transmission of pathogens/parasites is essential to the prevention and control of vector-borne disease outbreaks in an area. The invasion of Nypa fruticans in Okorombokho has resulted in the introduction of T. vaporariorum. The species is not yet of public health concern since it is neither known to transmit pathogens and parasites nor cause biting nuisance. However, some medically important arthropods have been identified in the study area. It is recommended that a program targeted at controlling these vectors be drawn up. Such program can prevent vector-borne disease outbreak and thus enhance the quality of health and life in the community.

ACKNOWLEDGEMENT
Authors appreciate the assistance received from the Centre for Wetlands and Waste Management Studies, University of Uyo, Nigeria. Chief Ujile of Okorombokho Community is also appreciated for his support. Authors acknowledge the technical assistance received from the Staff of the Insectary, Department of Animal and Environmental Biology, University of Uyo. We are thankful to Dr. I. Udo, a taxonomist of the Department of Crop Science, Faculty of Agriculture, University of Uyo, for his assistance.
REFERENCES
Jeffrey, S. D. and Overstreet, R. M. (2003). The Blue Crab Diseases, Parasites and other Symbionts. Faculty Publications from the Harold W. Manter Laboratory of Parasitology 426.